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‘ ABSTRACT.
A certain partial order on the set of all partitions of a given
natural number n describes many containment, specialization or
degeneration relations in the, seemingly, rather disparate parts
of mathematics dealing with permutation representations of S.s
the existence of (0,1)-matrices with prescribed row and column
sums, symmetric mean inequalities, orbits of nilpotent matrices
under similarity, Kronecker indices of control systems, doubly
stochastic matrices and vectorbundles over the Riemann sphere. In
this paper we discuss relations between all these subjects which
show why the same ordering must appear all the time. Central to
the discussion is the Schubert-cell decomposition of a Grassmann
manifold and the associated (closure) ordering which is a

quotient of the Bruhat ordering on the Weyl group Snw
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1. INTRODUCTION.

Let Kk be a partition of n, « = ( Ko “',Km),

Kl 20..2'(“1

and (Kl,--.,Km,O,...,O)o Quite a few classes of objects in

> 0, EKi = n, We identify partitions (Kl,...,Km)

mathematics are of course classified by partitions and often
inclusion, specialization or degeneration relations between these
objects are described by a certain partial order on the set of
partitions. This partial order on the set of all partitions of n

is defined as follows:

(x

t ]
(1.1 1,...,Km) > (Kl,...,Km )

r bs .
iff ¥ «k, £ I k!, v = 1l,e00, me
i = i
i=1 i=1

Thus, for example (2,2,1) > (3,2). If ¥« > k' we say that «
specializes to k' or that « is more general than k'. The reverse
order has been variously called the dominance order [2] , the
Snapper order [35,42] or the natural order [36]. It occurs
naturally in several seemingly rather unrelated parts of

mathematics. Some of these occurrences are the

(1) Snapper, Liebler-Vitale, Lam, Young theorem (on the
permutation representations of the symmetric groups)

(ii) Gale~Ryser theorem (on existence of (0,l)-matrices)

(iii) Muirhead's inequality (a symmetric mean inequality)

(iv) Gerstenhaber—-Hesselink theorem (on orbit closure
properties of SLn acting on nilpotent matrices)

(v) Kronecker indices (on the orbit closure, or degeneration,
properties of linear control systems acted on by the
socalled feedback group)

(vi) Double stochastic matrices (when 1is a partition "an
average" of another partition)

(vii) Shatz's theorem (on degeneration of vectorbundles over the



Riemann sphere)

These will be described in more detail in section 2 below. In
addition the same ordering, via the representation theory of the
symmetric groups, plays a considerable role in theoretical
chemistry (in the theory of chiral molecules), i.e., molecules
that are optically active [11,16,18]. Finally the same order
plays an important role in thermodynamical considerations.
Consider an (isolated) system described by a probability vector
p = (pl’pZ"")’ where pP; 1s the probability that a particle is
in state i, evolving according to some "master equation". Then in
[37,38] it is shown that the system evolves 1in the direction of
increasing 5 = (51,52,...) (with respect to the specialization
order), where p is the unique rearrangement of p such

that 51 > 52 2 +eo .+ This statement is a good deal stronger, in
fact infinitely stronger [39], than the statement that the

oo

entropy = I pilnpi must always increase.
i=1

Certain occurrences of the specialization order are known to
be intimately related. Thus (i), (ii), (iii) and (vi) are very
much related [2,5,13], cf. also section 2 below, and so are (v) &
(vii) [15] and section 8 below. This paper will show that all
these manifestations of this order are intimately related. Their
common meeting ground seems to be the ordering defined by closure
relations of the Schubert-cells (with respect to a standard
basis) of a Grassmann manifold. I.e. a Schubert-cell SC(A) is
more general than SC(A') ; in symbols: SC(X) > SC(A'),
iff SC(A) D SC(A'). This order in turn is much related to the
Bruhat ordering (sometimes called Bernstein-Gelfand—-Gelfand
ordering) on the Weyl group Shpe It 1s, in fact, the quotient
ordering induced by the canonical map of the manifold of all
flags in §n+m to the Grassmann manifold of n-planes in

(n+m)-space.



It should be said that in all probability there is much more
to be said. The diagram of interrelations between the
manifestations of the specialization order (cf. section 5.1
below) has overlap with another (functorial relationship) diagram
centering around the irreducible quotients of Verma modules for
sln, the Jantzen conjecture (now proved by A. Joseph) and the
Bruhat ordering, and involving, among others, work of Kazhdan-
Lusztig, Gelfand-MacPherson (relations with Schubert cells),
Borho-Kraft and the same relation between orbits of nilpotent
matrices and permutation representations which plays a role in

this paper. (We owe these remarks to W. Borho).

2. SEVERAL MANIFESTATIONS OF THE SPECIALIZATION ORDER.
A schematic overview of the various relations of the
specialization order to be described below can be found in

section 5 of this paper.

2.1. The Snapper, Liebler-Vitale, Lam, Young theorenm

(formerly the Snapper conjecture).

Let Sn be the group of permutations on n letters. Let
K = (Kl,...,zm) be a partition of n and let SK be the

corresponding Young subgroup SK = SK X oo X SK , Where

SK is seen as the subgroup of Sn acting on the™letters
i =
<, + .. + Kip t 1, coa, K1+ cee + Ky (1f K = 0 the factor

SK is deleted). Take the trivial representation of Sk and
m
induce this up to Sn. Let p(k) denote the resulting induced
representation. It is of dimension (E) = n!/Kl! eoo K& and it can
be easily described as follows. Take m symbols a1, seey ap and
consider all associative (but non-commutative) words
El oe e en of length n in the symbols aps, esey ap such that aj
occurs precisely Ky times. Let W(Kl,...,Km) = W(kx) denote this
set, then S acts on W(k) by
-1
€.0eeE = oo . h
o ( 1 n) Ec(l)eo(z) Ec(n) Let V(x) be the vector

space with the elements of W(k) as basis vectors. Extending the



action of S  linearly to V(k) gives a representation of S, and
this representation is p(«x).

Now the irreducible representations of S, are also labeled
by partitions. Let [«x] be the irreducible representation
belonging to the partition k. Snapper [21] proved that [«x]
occurs in p(k') only if « < k' and conjectured the reverse
implication. Liebler and Vitale [l14] proved that k < ' implies
that p(x) is a direct summand of p(x') which, of course, implies
that « < k' which in turn implies that [«x] occurs in p(k').
Another proof of the implication (via a different generalization)
is given in Lam [13]. Still another proof cam be based on Young's
rule, cf. section 6 below, and a completely elementary proof can
be found in [7].It is probably correct to ascribe the result in
the first place to Young.

2.2. The Gale-Ryser Theorem ([19]). Let p and v be two

partitions of n. Then there is a matrix consisting of zeros and
ones whose columns sum to u and whose rows sum

to v 1ff v > u*., Here

u* is the dual partition of p defined by ui = #{jluj > i},

For example, (2,2,1)* = (3,2).

2.3. Doubly Stochastic Matrices. A matrix M = (mij) is
called doubly stochastic if mij 2> 0 for all i,j and if all the
columns and all the rows add up to l. Let p and v be two
partitions of n. One says that p is an average of v if there 1s a
doubly stochastic matrix M such that p = Mv. Then there is the .
theorem that p is an average of v iff p > v in the specialization

order.

2.4. Muirhead's Inequality. One of the best-known

inequalities 1is

1/n 1

< n (xl

due to Muirhead [22] goes as follows. Given a vector

(xl,...,xn) +...+xn). A far-reaching generalization

p = (pl,...,pn), Py > 0, one defines a symmetrical mean (of the

nonnegative variables Xl""’xn) by the formula



- P p
(2.5) [p1(x) = (an)7tg x oD < 9(m)

where the sum runs over all permutations o & Sn' Then one has
Muirhead's inequality which states that [p](x) < [q](x) for all

nonnegative values of the variables Kiseoes X iff p 1s an

n
average of g, so that in case p and q are partitions of n this
happens 1ff p > q. The geometric mean—arithmetic mean inequality
thus arises from the specialization relation

(1,0-.,1) > (n,o,.--,O).

2.6, Completely Reachable Systems.

Let L denote the space of all pairs of real matrices
s
(A,B) of sizes n x n and n x m respectively. To each pair (A,B)
one associates a control system given by the differential

equations

(2.7) X = AX + Bu, X ¢ Rn, u &€

I =

i

where the u's are the inputs or controls. The pair (A,B), or
equivalently, the system (2.7), is said to be completely
reachable if the reachability matrix R(A,B) = (B AB ... A"B)
consisting of the n+l1 (mxm)-blocks AiB, i =0, .se, n, has

maximal rank n. In system theoretic terms this 1is equivalent to

the property that for amny two points x, x' € gn one can steer

[]

x(t) to x' in finite time starting from x(0) X by means of

suitable control functioms u(t).

Let L;rn denote the space of all completely reachable pairs
b4

of matrices (A,B). The Lie-group F of all block lower diagonal
matrices (; g), S € ggn(g), T € §§m(§)’ K an m x n matrix,



cr
acts on Lm n according to the formula
H

1 1

(2.8) (A,8)% = (sas™! + sprs”

8
K,SBT), g = (K g)

The "generating transformations" (A,B) + (SAS_l,SB) (base change
in state space), (A,B) ~» (A,BT_I) (base change in input space)
and (A,B) + (A+BK,B) (state space feedback), occur naturally in
design problems (of control loops) in electrical engineering. It
is a theorem of Brunovsky [31] and Kalman [10] and Wonham and
Morse [32] that the orbits of F acting on L;fn correspond
bijectively with partitions of n. The partition belonging to

(A,B) € L;fn is found as follows. Let dj be the dimension of the
subspace of §n spanned by the vectors Aibr, r =1, se., m,

i < j where br is the r-th column of B. Let ej = dj - dj—l’
d_1 = 0. The partition corresponding to (A,B) is the dual
partition of (eo,el,ez, consy en), i.e. k(A,B) = (eo,el,...,en)*.
The nunmbers Kl D ee pd Km making up x(A,B) are called the
Kronecker indices of (A,B). (Because the problem of classifying
pairs (A,B) up to feedback equivalence, i.e. up to the action of
F, 1s a subproblem of the problem of classifying pencils of
matrices studied by Kronecker: to (A,B) one associates the pencil
(A-sI B). The partition (eo,...,en) corresponds to the dimensions

of the filtration of controllability subspaces.

cr
Let @K be the orbit of F acting on Lm n

»
second theorem, noted by a fair number of people independently of

labeled by k. Then a

each other (Byrnes, Hazewinkel, Kalman, Martin,...), but never
yet published, states that ér ) eK, iff ¥« > k', Some of the
control theoretic implications of this are contained in Martin

[33].

2.9. Vectorbundles over the Riemann sphere. Let E be a

2 1
holomorphic vectorbundle over the Riemann sphere S° = P"(C). Then

according to Grothendieck [4] E splits as a direct sum of line

bundles.



(2.10) E = L(k;) ® oo ® L(k)

Where L(i) is the unique (up to isomorphism) line bundle over
21(C) of degree i, L(1) = L(1)®Y, i ¢ z, where L(1) is the
canonical very ample bundle of gl(g). Thus each holomorphic
vectorbundle E over gl(g) defines a m~tuple of integers «k(E)
(in decreasing order). The bundle is called positive if

Ki(E) 2 0 for all i = 1, «.., me Concerning these positive
bundles there is now the following degeneration result of Shatz
[20]. Let E, be a holomorphic family of m-dimensional
vectorbundles over gl(g). Then for all small enough

t, K(Et) > K(Eo)- And inversely 1if x > x' then there is a
holomorphic family E_ such that K(Et) = k for t small t # 0 and

K(Eo) = k',

2.11. Orbits of Nilpotent Matrices. Let N, be the space of

all nxn complex nilpotent matrices. Consider §£n(g) or g&n(g)
acting on Nn by similarity, i.e.

A% = sas7l(a e N, Se GL (C)).

By the Jordan normal form theorem the orbits of this action are
labelled by partitions of n. Let 0(x) be the orbit consisting of
all nilpotent matrices similar to the one consisting of the
Jordan blocks J(Ki), i =1, ¢eo, m, where J(Ki) is the

Ky X Ky matrix with 1's just above the diagonal and zeros
everywhere else. Then the Gerstenhaber-—Hesselink theorem says
that 0(k) D 0(x') iff x < x'. (Note the reversion of the order

with respect to the result on orbits described in 2.6 above).

3. GRASSMANN MANIFOLDS AND CLASSIFYING VECTORBUNDLES.

In order to describe how the various manifestations of the
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specialization order are connected to each other we need to
define Grassmann manifolds, the classifying vectorbundles over

them and their Schubert cell decompositions (in section 4 below).

3.1. Grassmann Manifolds. Fix two numbers m,n € N. Then the

Grassmann manifold gn(gn+m) consists of all n-dimensional
gn+m. Thus for example gl(gm+1) is the m—~dimensional
complex projective space gm(g). Let Q::;n+m)
complex n x (n+m) matrices of rank n. Let E£n(g) act on this

subspaces of

be the sgpace of all

space by multiplication on the left. Then the quotient space
C“X(“*'m)/g;n(_g) is G _(c™™®). The identification is done by

=re =n_ =
& Cn+m

associating to M € Cnx(n+m)

the subspace of
=reg

generated by the

rows of M.

gn(gn+m) inherits a natural holomorphic manifold structure
from an(“+m). For a detailed description of En(gn+m) see e.g.

[17] or [24].

3.2. The Classifying bundle. We define a holomorphic

vectorbundle Em over gn(§n+m) as follows. For each x let the
fibre over x, Em(x), be the quotient space gn+m/x_ More precisely
define the bundle n over gn(gn+m) by
n+m

(3.3) n_o= {(x, v e g (g™ x g

|lve x}
n

with the obvious projection (x,v)+> x. Then £ 1is the quotient

n+m n+m n-+m
) x )

bundle of the trivial vectorbundle gn(g c over gn(g

by nn. Both Em and n, can be used as universal or classifying
bundles (cf. [17] for n_as a universal bundle). Let E be an m-
dimensional vectorbundle over a complex analytic manifold M. Let
I'(E) = T'(E,M) be the space of all holomorphic sections of E,
i.e. the space of all holomorphic maps s: M + E such that
ps = id, where p: E + M is the bundle projection. The
universality, or classifying, property of Em in the setting of
complex analytic manifolds now takes the following form. Suppose
VC T(E) is an (n+m)-dimensional subspace such that for each

X € M the vectors s(x), s € V span E(x), the fibre of E over x.
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Now identify V = gn+m and assoclate to x € M the point of

Qn(§n+m) represented by Ker (V + E(x)). This gives a holomorphic
- . n+m
E° ¥~ gn(g {
¥, is isomorphic to E, WEEm = E., It is universality properties

E
such as this one which account for the importance of the bundles

map Y ) such._ that the pullback of £m by means of

Em and n, in differential and algebrailc topology [17], algebraic
geometry and also system and control theory (cf. [23,24] and the

references therein for the last mentioned).

The bundle Em has a number of obvious holomorphic sections,
viz. the sections defined by ei(x) = g

th standard basis vector of 9n+m, i =

5 mod x where ey is the 1i-

1, ¢o¢, n+m. And, as a
matter of fact, it is not difficult to show that

n+m

rCE_,g (¢ ™)

form a basis for this space of holomorphic sections.

) is (n+m)~dimensional and that the 61""’8n+m

4., SCHUBERT CELLS.

4.1, Schubert Cells. Consider again the Grassmann manifold

gn(§m+n). Let A = (Al,...,An) be a sequence of n-subspaces of
§n+m such that 0 # A1<: A2c:...c:An with each containment strict.

To each such sequence A we associate the closed subset
(4.2) 5C(a) = {x e g ("™ |din(x N A > 1}

and call it the closed Schubert-cell of the sequence A. In
particular if 0 < Yy < Y, € see < Yo £ n+m is a strictly
increasing sequence of natural numbers less than or equal to n+m
then we define (setting y = (Yl,...,yn))
Y1 Ya
(4.3) SC(y) = SC(g seee;,C )
where C' is viewed as the subspace of all vectors in £n+m whose

last n + m —-— r coordinates are zeroe.

4.4, Flag Manifolds and the Bruhat Decomposition. A flag in

<+
mC Qn ™ such

§n+m is a sequence of subspaces F = F,C ...C'Fn

1 +
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that

dim F; = i. Let Fa(g™"™®

) denote the analytic manifold of all
flags in §n+m. There is a natural holomorphic mapping
Fz(gn+m) +> gn(gn+m) given by associating to a flag F its n~-th
element Fn‘ The flag manifold can be seen as the space of all
cosets B?, g8 € GL, 4, (C) where B is the Borel subgroup of all
lower triangular matrices in CL,+n(C). The mapping

g%n+m(g> - Fz(gn+m) associates to a matrix g the flag F(g) whose
i~th element 1is the subspace of §n+m spanned by the first i row

vectors of g.

Now view Sn+m’ the symmetric group om n + m letters as a
subgroup of g£n+m(g) by letting it permute the basis vectors
(o(ei) = eo(i))' Then in §§n+m(§) we have the so-called Bruhat

decomposition.

(4.5) GL (¢) =UB o B (disjoint wunion)
==n+m = o
Where o runs through the Weyl group Sp+m ©f ££n+m(§)' An

analogous decomposition holds in a considerable more general

setting (reductive groups, cf. [25], section 28).

4.6. The Bruhat order (also sometimes called Bernstein-—
Gelfand—-Gelfand, or BGG order).

The closure of a double coset B ¢ B is necessarily a union of
other double cosets (by continuity). This defines an ordering on

the Weyl group Sp+p defined by

m

(4.7) g > T «- BoB D BtB

This ordering plays a considerable role in the study of
cohomology of flag spaces [1l] and also in the théory of highest
weight representations [27,26].

Let H be the subgroup of §n+m(g) consisting of all block

S 0
lower triangular matrices of the form ( 11 ,

S21 S99
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Sllé'gén(g), Syp€ ggm(g), Sy; an arbitrary m x n matrix. Then,

using the remarks made in subsection 4.4 above, one sees that
n+m

G, (¢ ) is the coset space {Hgl|g e §¥n+m(§>}‘ Now let o € S

and let Yy < ees £ Y, be the n natural numbers in increasing

+m

order determined by o(eY ) € {el,...,en}, i =1, ..., n. Then one
() » §,(e™™), t.e.

the set of all spaces spanned by matrices of the form h o b,

easily sees that the ima%e of BoB under SL h4m

h € H, b € B, is the open Schubert cell of all elements in

gn(g“+m) spanned by the rows of a matrix of the form

* LN ] * 0 '.0.0 0 e ¢ e 0
* e o o * * ® e o * O ® @ O O
* * 0 ® o0 0

® @ o * * e o o * * ® o o
column n> c;:;;;ﬁa?

where the last * in each row is nonzero. The closure of this open
Schubert-cell is the Schubert-cell SC(y) defined in (4.3) above.
One easily checks that

(4.8) SC(u)C SC(Y) hed ui SYi, i = l, see y I

and this order on the Schubert cells SC(Y), or the equivalent
ordering on n-tuples of natural numbers, is therefore a quotient
of the Bruhat order on the Weyl group Sp+m*+ It is the induced
order on the set of cosets (Snxsm)o, c €S . - (Obviously if
T € Sn x Sm, then 'ro(eY ) € {el,...,en} if

c(eYi) € {el,...,en}). 1

+m

(And inversely the Bruhat order is determined by the associated
orders of Schubert cells in the sense that o > T in S, iff for
all k = 1, ..., n-1 we have for the associated Schubert cells in
Qk(gn) that SC(o) D SC(tT); this is a rather efficient way of
calculating the Bruhat order on the Weyl group Sn)‘
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5. INTERRELATIONS.

Now that we have defined the concepts we need we can start
to describe some interrelations between the various
manifestations of the specialization order we discussed in
section 2 above.

5.1. Overview of the Various Relations. A schematic overview of

the various interconnections is given by the following diagram.
In this diagram we have put together in boxes the manifestations
which are more or less known to be intimately related and have

explicitly indicated the new relations to be discussed in detail

belows.
Gerstenhaber
E - /7Hesselink Theorem A
-
-
Lt =

Snapper conjecture Kronecker indices of systems
Gale—-Ryser Theorem B
Doubly Stoch.Matrices
Muirhead's inequality Holomorphic vector bundles

I 7 " I
D Schubert-cell order C

(Bruhat order) <

5.2. On the various Relations. The manifestations of the

specialization order in box I are wellknown to be intimately
related [2,5,11,13,19]. In particular, cf. [5] for the relations
between doubly stochastic matrices, Muirheads inequality and the
specialization order, which brings in also the marriage theorem
and the Birkhoff-v. Neumann theorem that every doubly stochastic
matrix is a convex linear combination of permutation matrices. '
For the relations of the Gale-Ryser theorem with the more or less
combinatorial entities just mentioned cf [13,19] and also [2]

which also contains lattice theoretic information on the
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partially ordered set of partitions with the specialization

order.

Besides the Snapper conjecture {(i.e. the Snapper, Liebler-
Vitale, Lam, Young theorem) the Ruch-Sch8nhofer theorem [18], cf.
also [21] also belongs in box I. This ctheorem states that

{a(ﬁ},gia)> = | 1f and only {7 - > u* wher~ <,> denotes the
usual inner product (which counts how many irreducible
representations there are in common), and where p(u) is the
representation of Sn obtained by inducing up the alternating
representation of the Young subgroup S“. One way to link this
theorem with the Gale-Ryser theorem 1s via Mackey's intertwining
number theorem [29, 44] and Coleman's characterization [28] of
double cosets of Young subgroups, cf. [1l1]. Another way goes via
a beautiful formula of Snapper which we now explain (in a
somehwat simplified case). Let X = {1,2,...,n} with Sn acting on
it in the natural way. Let Y be a finite set. A weight on Y is
simply a function w: Y » NU {0}. Given a function f: X + Y
its weight w(f) is defined by w(f)(y) = % f_l(y), where # denotes
cardinality. For each weight w on Y let I(w) = {f:X>Y|w(f) = w}.

Now Sn acts on Yx

the space of functions from X to Y by

g{(f)(x) = f(a—l(x)) and I(w) 1s obviously invariant under this
action, This associates a permutation representation p(w) with
each weight w on Y. Now consider two finite sets Yl and Y2 with
welghts Wy and Wo e Let Yl X Yz be the product and “1’“2 the
natural projections on Yl and YZ‘ Define M(wl,wz) as the set of
all weights w on ¥, x Y, such that wi(yi) = w(w;l(yi)) for all
vy € Yi’ i = 1,2, Finally let M(wl,wz) be the sum of the
characters belonging to the weights w € M(wl,wz). Then Snapper's

formula says
(5.3) MWy ,w,),x> = <plwide(w,), x>

for all characters x. To connect this result with statements on

integral matrices, it remains to note that < MMw,.w),1)> is the
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num ber of integral matrices with row sums LA and column sums Wo
and to prove that <M(wl,w2),6> is the number of (0,1)-matrices
with row sums w1 and column sums wy. Here § is the alternating

cha racter of Sn'

Relation A in the diagram is essentially established by
giwving two virtually identical (but dual) proofs of the theorems,
and these results can then be used to give natural continuous
lsomorphisms between feedback orbits of systems and similarity
orbits of nilpotent matrices. More details are in section 7
bed ow. For connection B one associates to a system I € LEF a
vec tor bundle E(I) of dimension m over fl(g). The constru::tion
used 1is a modification of the one in [15], cf. section 8 below.
It Thas the advantage that one sees immediately that
kCXZ) = «(E(Z)). For connection C one uses the classifying

n+m

mor phism VY_: _Ifl(g) > gn(g ) attached to a positive bundle E

E
ove ¥ El(g) (cf. section 3.2 above). It turns out that the
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invariants of E can be recovered fron WE by considering the
dimensions of the spaces Al eeey A, such that IqYE C sc(4),

cf. section 9 below. To establish a link between representations
of S 4, a8nd Schubert-cells we construct a family of
representations of Sn+m parametrized by gn(g“+m), which can be
used to give a deformation type proof of the Snapper conjecture
(in the Liebler-Vitale form) (cf. section 12. below). This is not
the shortest proof but it rontains in it a purely elementary
proof which uses no representations theory at all {7]. Combining
the links A, C, D gives of course a link from the Gerstenhaber-
Hesselink theorem to the Snapper conjecture, albeit a tenuous
one. However, there is also a very direct link, due to Kraft
[12], cf. section 6. below, and this gives yet another proof of

the Snapper conjecture.

One possible approach to the Snapper conjecture is, of
course, via Young's rule (discussed below in section 6), which
states that the irreducible representation [k] occurs in p(A)
with a multiplicity equal to the number of semistandard K=
tableaux of type A. This can be made the basis of a proof and
gives yet another link between the Snapper, Liebler-Vitale, Lan,
Young theorem and the Gerstenhaber-Hesselink theorem. Both can be
seen as consequences of the statement that there exists a
semistandard A-tableau of type u iff A < u, cf. section 7.6

below.

Finally let us remark that the proof of the increasing
mixing character theorem for thermodynamic processes of Ruch and
Mead follows readily from the theorem about doubly stochastic

matrices described in 2.3 above.

6. YOUNG'S RULE, THE SPECIALIZATION ORDER AND NILPOTENT MATRICES.

6.1. Young Diagrams and Semistandard Tableaux. Let

K = (Kl,-..,xm) be a partition of n. As usual we picture Kk as a
Young diagram; that is an array of n boxes arranged in m rows

with Ky boxes in row i, as in the following example

1

(6.2) K = (4,3,3,2)
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Let A = (Al,...,ks) be another partition of n. Then a
semistandard k-tableaux of type A is the Young diagram of k with
the boxes labelled by the integers l, ..., s such that i occurs
Ai times, 1 = 1, ..., 8 and such that the labels are
nondecreasing in each row of the diagram and strictly increasing
along each column. An example of a (5,3,2)-tableaux of type
(4,2,2,2) is

(6.3)

We shall use K(x,A) to denote the number of different
semistandard x-tableaux of type A; these numbers are sometimes

called Kostka numberse.

6.4, Young's Rule. Let [p] denote the irreducible

representation associated to the partition p. Then Young's rule
(cf. [30]) says that

6.5. Theorem. Let x and X be partitions of n. Then the
number of times that the irreducible representation [A] occurs in
the permutation representation p(x) is equal to the
number K(A,x)

of semistandard A-tableaux of type k.

6.6. The Specialization order and Semistandard Tableaux.

The implication x > A <« p()) is a direct summand of p(«x)
follows easily from this. First, however, we state a lemma which
is standard and seemingly unavoidable when dealing with the

specialization order. Its proof is easy.

6.7. Lemma. Let A = (kl,...,km) and k = (Kl,---,Km) be two
partitions of n and suppose that A > x and
(A> > k) {(A=p or /uzK) for all partitions s, Then there are
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an 1 and a j, i < j such

that Ky = ki + 1, li < Ai~

K = ks, s # 1,7,

19 Kj = kj - 1, lj > lj+l’

s
Pictorially the situation looks as follows

That is a box in row j which can be removed without
upsetting ¥(row j) > ¥(row j+1) (which means that we must have
had Aj > Xj+1) is moved to a higher row i which is such that it
can receive it without upsetting ¥(row 1) < #(row i-1)(which
means that we must have had Ai < Ai_l). We will say that A
covers K. Of course not all transformations of the type described
above result in a pair A,k such that there is no u Strictly

between A and K.

6.8. Lemma. Let X and K be two partitions of n and suppose
that there exists a semistandard A-tableaux of
type k. Then x > A,
Proof. In a semistandard A-tableaux of type k all labels i must
occur in the first i rows (because the labels in the columns must
be strictly increasing). The number of labels j with j < i is
Ky + oeo + Ky and the number of places available in the first i

+ ® ® o + AiZK + °* @ o + K for

rows 1is Al + e + Ai. Hence A 1 i

all i so that A < k.

1

6.9. The Implication [k] occurs
in p(A)DHk < A

Now suppose that [k] occurs in p(A). Then there is semistandard

x-tableaux of type A by Youngs rule so that « < A by lemma 6.8.
This implies, of course, that: p(x) is a subrepresentation of
p(X) = (x < A). Because there is obviously a semistandard «k-
tableaux of type x (in fact precisely one).

6.10. The Implication « < A% p(x) is a subrepresentation of
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p(A). To obtain this implication it suffices by Young's rule to
show that the Kostka numbers satisfy K(u,x) < K(u,r) 1if x < A
for all w. To see this it is convenient to define K(u,v) as the

number of semistandard u-tableaux of type v for any sequence of

nonnegative integers v = (vl,...,vs) such that |[v] = n. Let
v o= (31,...,33) denote the rearrangement of the vi such that
31 > 32 D ees 2 ;s' Then K(p,v) = K(u,G) and from this (non

trivial) fact combined with lemma 6.7 it is easy to see that
K(u,k) < K(u,A) if ¢ < A. (Assume X covers « and rearrange both
so that the two changing entries are the first two). We owe these

remarks (indirectly) to A. Lascoux.

6.11. Nilpotent Matrices and Representations [12]. Let NK be
the set of nilpotent matrices labelled by the partition k, cf.
2.11 above. Let ﬁK be its closure and let C be the set of
diagonal matrices. Now take the scheme theoretic intersection of
the closed subvarieties ﬁK and C of the scheme of n x n matrices
over C. This is a finite C-algebra with an obvious S,~action.
This turns out to be the permutation representation p(kx) and
using results from [40] a proof of the Snapper, Liebler~Vitale,
Lam, Young theorem can be deduced. One very nice thing about this
construction is that it also makes sense for the other classical
simple Lie algebras and their Weyl groups. There are also
relations with the socalled Springer representations of Weyl

groups, [43,41].
7. NILPOTENT MATRICES AND SYSTEMS.

As was remarked in section 5 above the connection A in the
diagram above essentially consists of an almost identical proof
of the two theorems. We start with a proof of the Gerstenhaber-—
Hesselink theorem. The first ingredient which we shall also need
for the feedback orbits theorem is the following elementary

remark on ranks of matrices.

7.1. Lemma. Let A(t) be a family of matrices depending

polynomially on a complex or real parameter t. Suppose that
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rank A(t) < rank A(to) for all t. Then rank A(t) = rank A(to) for
all but finitely many t.

This follows immediately from the fact that a polynomial in t has

only finitely many zeros.

Let A be a nilpotent matrix. Then of course the similarity
type of A is determined by the sequence of numbers.
n, = dim Ker &io
The numbers € = ngu; -~ ny form a partition of n and are dual to
the partition formed by the sizes of the Jordan blocks.
The key to a simple proof of the Gerstenhaber-Hesselink
theorem is in exploiting this filtration instead of the Jordan

form. The following elem entary lemma is the key observation.

7.2. Lemma. Let A be a nilpotent n x n matrix and let F be
such that

(7.3) F(Ker Ai) C Ker Ai_l, i=1,2,..., n.

Then tA + (1-t)F is similar to A for all but finitely many t.
Proof. We show first that

(7.4) Ker(tA+(1-t)F)* > Ker al

for all t. Indeed from (7.3) with i = 1 we see that F(Ker A) = 0
and it follows that (tA+(1-t)F)(Ker A) = 0 which proves (7.4) for
i = 1. Assume with induction that (7.4) holds for all i < s.

Then

(tA+(1-bP) °KRera® = (ta+(1-t)F)S I (tA+(1-t)F)KerAS

c (ea+(1-8)F) 5" ker a5 2 g

because A Rer A% ¢ Ker AS7! and F(Ker aS) ¢ aS~! by (7.3).
This proves (7.4). Using 7.4 we know by (7.1) that for almost all

t (take ty, = 1)

(7.5) rank(tA+(l~t)F)i = rank(Ai)
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and because tA + (1-t)F and A are both nilpotent it then follows

that the conclusion of the lemma is satisfied.

Now let A be a nilpotent matrix. We say that A is of type
K = (Kl,.a.,Km) if the Jordan normal form of A consists of m
Jordan blocks of sizes k, x Kis i=1, «ee, me Eeg. A is of type

i
(4,2) iff its Jordan form is

OO0 O O oo
ool O O OO
O] ©O O OO

OOl O O O
OOl O © =O
OOl O = OO

Consider Ker A, Ker A2,..., Ker A". Then A is of type k 1ff

i % %
dim(Ker A7) = <y + oo + Ky

partition of k. Thus in the example the kernel spaces Ker Al are

i=1 ,¢0e, n where k* is the dual

spanned by the basis vectors {el,eS}, {el,ez,es,e6},

legsegse3se5,e0), fe e 85,0, 05,0, 0.

7.6. Semistandard Tableaux and Nilpotent Matrices. Let A be

a nilpotent matrix of type k. Let u be another partition of n and
suppose that there 1s a u*-tableaux of type x*. Then there is
nilpotent matrix F of type u such that F(ker Ai) C Ker Al=l gor
all i. This matrix F is constructed as follows. First choose a

* *
basis €15 eces € of gn such that the first k,+ ... + K

elements of this basis form a basis for Ker A%, i= 1, f., n. Now
consider a semistandard u*— tableaux T of type K*. Take the Young
diagram of }f and lable the boxes of it by the basis vectors
€1, eco, € in such a way that the boxes marked with i in the
semistandard tableaux T are filled with the basis vectors

e + see Fte ese € o
* * 4 4 * Dl.+ *
Kl Ki_1+l K1+ Ki

This can be done because T is of type k* so that there are

¥*
precisely K: boxes labelled i in T. Call this new‘ﬂf—tableaux T'.
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Now define F by F(ei) = e if e is just above e, in the

j!
%
4 —tableaux T' and F(ej) = 0 if e. occurs in the first row of

J
* *
T'. Then obviously dim Ker Fi = ¥y + «oo + u, so that F is of

i

- *

type u and F(Ker Ai)c: Ker Al7!l because the B —tableaux T was
semistandard which implies that the labels are strictly

increasing along columnss

%*
An example may illustrate things. Let ¥« = (2,2,2),
* * *
p = (4,1,1)s A u ~tableaux of type « is then

Inserting €1, e+e, €g in such a way that e;,ep are put into boxes
marked with 1, e3,e, in boxes marked with 2 and eg,e¢ in boxes

marked with 3 gives for example

which yields an F defined by F(e6) = ey, F(ea) = ey,
F(el) = F(ez) = F(ea) = F(es) = 0,

7.7. Proof of the Gerstenhaber—-Hesselink Theorem. (Cf. 2.11

above for a statement of the theorem).

The implication + is immediate. Indeed if At € 0(x)
converges to A0 € 0(A) as t » 0 then rank (Ai)z.rank (Ai) for
small t and all 1 = 1, ..., n. Hence dim(Ker Ai) < dim(Ker A;)

* % %
+ eee + Kk, <A, + s + A, for all i,

hence K* > X* and k < A. To provi thelopposite iiplication it
suffices to show this in case that k is obtained from A by a
transformation of the type described in lemma 6.7. (Because if
0(k) D 0(A) and OCA) D O(u), then O0(k) D OCAr), and hence
0(k) D 0(u)). Then A* is obtained from K* by a similar

transformation.

for small t so that «

— %
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Recall the picture

* *
Now take the unique semistandard k -tableau of type Kk and

transform the box [ together with its lable. The result is
obviously a semistandard A*—tableau of type K*. Let A be a
nilpotent matrix of type k. Then by the comnstruction of 7.6 above
there is an F of type A such that F(Xer Ai) C Ker A7l Then

tA + (1-t)F is similar to A for almost all t by lemma 7.2 so that
there is a sequence of A's in 0(k) converging to F € 0(A),
proving that O(A) € 0(x), which finishes the proof of the

theorem.

Incidentally it is quite easy to describe F directly without

resorting to semistandard tableaux [8].

7.10. Kronecker Indices of Systems. Let (A,B) € L;rn be a
H

completely reachable pair of matrices. Recall that this means the

matrix R(A,B) = (B AB ... A"B) has rank n. Recall that the
Kronecker indices x(A,B) of the pair (A,B) are defined as

follows. Let for i = 1, «ee, n

(7.11) Vi(A,B) = space spanned by the column vectors of
AjB, j = 0, LI IY i“'l. .

Let di = dim Vi(A,B), e, = di - di—l’ d0 = 0. Then e < e 1

i =1, ..., n-1, and «(A,B) is defined as the dual partition of n
*
(7.12) x(A,B) = e(A,B)

where e(A,B) = (el”"’en)‘
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The orbits of the feedback group (cf. 2.6 above) acting on

L;rn are precisely the subsets of L;rn with constant x(A,B).
b b4
Let U(x) be this orbit. The "degeneration of systems theorem” now

says

7.13. Theorem. U(A) D U(k) « A > «
Here follows a proof which is virtually identical with the
proof of the Gerstenhaber-Hesselink theorem given above. First if
(At’Bt) > (AO,BO) as t + 0, (At’Bt) € U(r), (AO,BO) € U(x),

i21 i-1 . )
then rank (A B ees 3 A_B Bt) > rank(Ao Bo’ coe ’AoBo’Bo)

t t’ toe?
for small t. Hence dim Vi(At’Bt) > dim Vi(Ao’Bo) for small t.
Hence e(At’Bt) < e(Ao,Bo) for small t and K(At,Bt) > K(AO,BO)

for small t which proves the implication De

To prove the inverse implciation it suffices to prove this
in the case k is obtained from A by a transformation as described
in lemma 6.7 (exactly as in the case of the Gerstenhaber-
Hesselink theorem). Now let (A,B) € U(A). Choose a basis
€15ee0,e  for gn such that the first A: + ... + X: elements of
€1,.00,e_ form a :asis for Vi(A,B), i =1, ..., mn. Now*write in
the €1s+es,e, in A in the standard way and transform A
backwards to K*, moving [ together with its label, cf the picture
in section 7.7 above. E.g. if K* = (4,3,2,2,1) and

A* = (4,4,2,1,1) then this would give

el 82 83 84 el e2 63 84
s % &7 ®s %6 ¢7  °g
& %10 9 %10

€1 &g €11

€12 €12

*
The vectors in the first i rows of A are a basis for Vi(A,B).

Now define a pair (F,G) in terms of k¥ as follows. G consists of
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*
the vectors in the first row of «x (plus a zero vector in case
% *
K, < Xl), and F is defined by F(ei) if e occurs just

= 4 '

beiow ey in m* and F(ei) = (0 otherwise. iote th: similarity with
the construction in 7.6. One could put this in "Young tableaux"
terms too. The relevant "Young tableaux are then the inverse
semistandard ones with labels strictly decreasing from left to
right along rows and decreasing from top to bottom along columns.
Then (F,G) has the following properties (all immediate)

(1) (F,G) € U(x) C L;fn

(11) V,(F,6) < Vv, (4,B)

(i1i) FVi(A,B) C Vv (A,B)

i+1

(of course (ii) follows from (iii) together with
Vl(F,G) C:VI(A,B)). Now consider A = tA + (1-t)F,

Bt = tB + (1-t)G. Then
(7.14) Vi(At’Bt) < Vi(A,B) for all t
(7.15) Vi(At’Bt) = Vi(A,B) for all but finitely

many t

Indeed obviously Vl(At,Bt) C;Vl(A,B) because of (ii) above for i
= 1., Now assume that (7.14) holds for all i < r. Then

V(A ,B) = (tA+(1-t)F)V__ (A ,B) + V__ (A ,B)

C tAV__ (A,B) + (1-t)FV__ (A,B) + V__, (A,B)

- Vr(A,B) + Vr(A,B) + Vr_l(A,B) = Vr(A,B)

This proves (7.14) and (7.15) follows by means of lemma 7.1 (with

ty, = 1) because

i-~1
dim vi(At’Bt) = rank (At Bt’
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Now (At,Bt) + (F,G) € U(x) as t + 0 and by (7.15) (and the
theorem that the orbits under the feedback group are classified
by the Kronecker indices) all but finitely many of the (At,Bt)
are feedback equivalent to (A,B). Thus @,G)é U( k) and

(F,G) € Tr) proving the theorem.

7.16. Remarks. The two proofs are very similar (up to.
duality in a certain sense). This can be given more precise form
as follows. For a nilpotent matrix N €& Nn let
s(N) = {(a,B) € LgrnlNiAi”lB

cr >
(4,8) € L let t(A,B) = {ven|n

Then using the results above one shows that

=0, i = 1,...,n} and for

1pt7lg =g, 1= 1,...,0}.

£ s(0(x)) = 0(0), s £(T(x)) = T(x)

so that t and s set up a bijective correspondence between the
closures of orbits in the two cases and hence induce a bijective
order preserving correspondence between the sets of orbits

themselves.

8. VECTORBUNDLES AND SYSTEMS.

This section contains a modified version of the construction
of Hermann-Martin [15] associating a vectorbundle E(I) over the
Riemann sphere gl(g) to every T = (A,B) € L;fn. This version
makes it almost trivial to see that E(I) splits as a direct sum
of line bundles L(Ki), i=1, <., m where k = (Kl,...,Km)
is the set of Kronecker indices of I.

The first thing needed is some more information on the

universal bundle Em.

8.1. On the Universal Bundle & =+ G (Cn+m). Let V be a
m =n T

complex n + m dimensional vector space and V* = HomC(V,g) its
dual vector space. Given x € gn(gn+m) define x%= {y € V¥ <y,v> =0
=0 for all x e V} ' where <,> denotes the usual

pairing V*¥ x V » C. Then x* is m-dimensional and x> x*



defines a holomorphic isomorphism
. H %Y,
(8.2) d: G (V) » G_(V*)
Now v € V/x defines a unique homomorphism vT: x* + C as follows:
T ~ ~
v (a) = <a,v> for all a ¢ x*, where v € V is any representative
of v. This is well defined because <a,b> = 0 for all beg x if
a € x*, This defines an isomorphism between the pullback

-1 1
(d l)'im and the dual of the subbundle n, on Gm(V*) defined by

o= {(x*,w) 3 gm(V*) 4 V*,w € x*}
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It follows that & is a subbundle of an n 4+ m dimensional trivial

n+mn o n-+m
bundle gn(g ) x C . Because gn(g

all holomorphic maps gn(gn+m) + C are constant so that the space
n+m n+m n+mn
) )) is of

x ¢™7, g (g
dimension n + m. As a subbundle of a trivial (n+m)-dimensional

n+m) is projective (compact)

of holomorphic sections r(gn(g

=

bundle Em can therefore have at most (n+m) linearly independent

holomorphic sections. But we have already found (n+m) linearly

independent sections viz. the €ys eees E_ L defined by
ei(x) = e, mod x where ey is the i-th standard basis vector of
Cn+m. Therefore

(8.3) dim T(E_,6 (¢"™™) = n +m

Now let A € E;n+m(£)' Then A induces a holomorphic

automorphism A* of Qm(gn+m) defined by x+ Ax. Then, of course,

- + +
there is an induced isomorphism A 1: Qn R/ax > gn ®/x which for
varying x induces an isomorphism
!
(8.4) AgE = E_, A€ GL . (C)

8.5. The Line Bundles L{i) over gl(g). The Riemann sphere

PI(C) = 52 can be obtained by gluing together two copies of g

along the open subsets CN{0} by the isomorphism
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-1
cn{o} » cNf0}, st =8

A line bundle over gl(g) is then obtained by giving a holomorphic
isomorphism g\{O}xg > g\{o}xg linear in the second variable
compatible with the above isomorphism. Obviously the only

1

possibilities are (s,v) =+ (s~ ,siv) for 1 € Z. This gives us the

following commutative diagram identifications

gxC D ¢N{0}xC T 1 > on{0xgcCxg
;" A (s,v)+(s »8 V) - 5
1\ s » s 1=t 1 7 2
C D CN{ol -  CN{0lc ¢

The corresponding holomorphic line bundle is denoted L(-i). A
section of L(-i) comsists of two holomorphic mappings s;,s, of
the form s + (s,f(s)), t + (t,g(t)) such that sif(s) = g(s_l). It
readily follows that f(s) must be a polynomial of degree § = 1i.
Thus

(8.6) dim T(L(1))

[}
[}

if 1 < 0

(8.7) dim T(L(i))

I
[N

+1 1f1 >0

8.8. The (modified) Hermann-Martin vectorbundle of a system.

Let £ = (A,B) be a pair of real of complex matrices of sizes nxn
and nxm. Then (A,B) is completely reachable (cr) iff the

n x (n+m) matrix (sI-A;B) is of rank n for all complex values of
s. So if I = (A,B) is cr one can define a holomorphic map wz by

(8.9) wz: (gn+m), s+~ Row(sI-A;B), »+~ Row(I;O0)

[ Ra]
~
[ Xe!
-~
¥
[{ X

n

where Row(M) for an n x (m+n) matrix M denotes the subspace of

gn+m generated by the rows of M. The vectorbundle E(Z) over

gl(g) is now defined by

(8.10) E(D) = wégm

8.11. Proposition. E(£} depends only on the feedback orbit
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of X,

Indeed one easily checks that Z= (A,B), L' = (A',B') € L:fn
are feedback equivalent (cf. 2.6
above) iff there are constant invertible matrices P,Q such that
P(sI-A;B)Q = (sI-A';B'). Now Row(PM) = Row(M) and
postmultiplic?tion with'Q Shanges Y. to Q*OWX
and E(Z') = o, (& ) = ¥(QuE ) = (¥;(8 ) = E(L) by 8.4 above,

proving the proposition.

Thus to determine E(I) we can assume that £ = (A,B) is in

Brunowsky canonical form which means that A,B takes the form

o 1 o} c 0 ¢
0 C » Xy
1 0
0 (o) i 0 © J
0 1 o] ¢ O o©
0 r K
i 0
7] 0 o 1 © )
o1 o] 0 ¢ ©
K
3
0 c
i 0
0 0 o o 1
in case m = 3, where (KI,KZ,K3) = k(A,B) are the Kronecker
indices of I = (A,B). (The general case is evident from this

example); every (A,B) € U(x) 1is feedback equivalent to such a
pair [31,10]. The matrix (sI-A;B) is now easily written down, and

one observes that for all s # 0, =, ey = e, E ov. = eKl = e
mod Row(sI—A;B); i.e. mod wz(s) and for s = 0,
€, = .ee¢ = & z e = 0 but e # 0 and for s = =,

2 Kl n+l
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e, = eeo e = 0 and e +1 F 0. It follows that the vectors

1 K
el(wz(s)),... s € (wz(s)), €n+1(wz(s)) span a one-dimensional

1
. 1
subspace of & (¥.(s)) for all s so that E(Z) = Y_& contains a
m 'z Z7°m

line bundle Ll which admits at least k, + 1 linearly independent

1
holomorphic sectiomns wviz. the Els oo eKl, En+l' Similar
relations hold for ¢ 5080y E 5 €, .
Kl+...+Ki_l+l K1+...+1ci n+i
for all i = 1, <.., m giving us subbundles Li’ i =1, eco, m
which admit at least Ky + 1 linearly independent holomorphic
sections. This exhausts the €, and because the

i
sl(x), oo ey €n+m(x) span Em(x) for all x € gn(g Yy it follows

that E(Z) ==@Iﬁ' As the pullback of the bundle Em,E(Z) itself is

a subbundle of an (n+m)~dimensional trivial bundle. Because fl(g)

n-+m

is projective it follows (as before) that E(Z) has at most n + m
linearly independent holomorphic sections. But Li has at least

Ky + 1 linearly independent sections, hence @ L; has at least

Z(Ki+l) = n + m linearly independent sections which proves that
Ly has precisely ks + 1 linearly independent sections and hence
identifies L; as the bundle L(Ki) described above in (8.5). We

have reproved the theorem of Hermann and Martin [15].

8.12. Theorem. Keeping the ngtations introduced above in
(8.10) and (8.5) we have E(Z) = @ L(Ki). Still another proof of
this theorem, using the Riemann—ﬁgéh theorem is found in Byrnes
[34].

8.13. The Correspondence B . (cf. the diagram in sectiom 5

above). The mapping LI+~ E(I) is obviously continuous. Thus the
result U(k) D U(A) = k¥ > A can be deduced from Shatz's theorem
(cf.2.9). Inversely Shatz's theorem for positive bundles over
gl(g) can be deduced from the result on feedback orbits because
every positive bundle arises as an E(I). By tensoring with a
suitable L(r), r high enough, the result is then extended to

arbitrary bundles over Pl(C).
= =
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9. VECTOR BUNDLES, SYSTEMS AND SCHUBERT CELLS.

9.1. Partitions and Schubert-cells. Let x be a partition of n. To

Kk we associate the following increasing sequence of n numbers

T(K).

(9.2) (k) = (2’3’""Klii’f}+3""’K1+K2+2’""

)

<1 Ko

® @ @ . + ¢ ® & ® @ O
K1+ +Km_1+m 1, ,K1+ +Km+m)

& . e
K
m

Let Tj(K), j =1, «es, n, be the j-th element of this sequence.

It is an easy exercise to check that
(9.3) K > X = Ti(K) > ri(k) for all 1 = 1, ...y, 1

Thus the specialization order is a suborder of the inclusion
ordering between closed Schubert cells, because

SC(t) D sC(t') = T4 >tl, i =1, ¢ee, 1. And in turn, as we saw
above in section 4, the Schubert-cell order is a quotient of the

Bruhat order on the Weyl group Sn+m‘
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9.4, Systems and Schubert Cells. Let (A,B) € L;rn be a
3
system and as in section 8.8 consider the associated holomorphic
morphism
1
wZ' E (g) > gn(S
canonical form. Then simple inspection of the matrix (sI-A;B)

n+m)_ Suppose that (A,B) are in Brunovsky

(cf. the example below proposition 8.11) shows that

Im wz C SC(t(k)), where « = xk(A,B). Now let (A,B) be any systen

in L;fn' Then it is feedback equivalent to one in Brunovsky
canonical form so that (sI-A;B) = P(sI—AO;BO)Q for certain

constant invertible matrices P,Q where (AO,BO) is a canonical
pair. Premultiplication with P does not change ¢E and
postmultiplication with Q induces an automorphism of gn(gn+m) takM?
Schubert-cell SC(T1(x)) into another Schubert-cell of the same

dimension type. Thus we have shown?

9.5. Theorem. Let I € LT , « = k(L) and let
1 n+m m,n
wz: P (g) > gn(g ) be the Hermann-Martin morphism of ZI.
Then there is a Schubert-cell SC(A), A = (A,,+++,A ) such that
- 1 n
Im wzc SC(A) and dim A
(9.2).

i = Ti(K), where Ti(K) is defined by
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We will now show that the Schubert-cell SC(A) obtained in
9.5 1is the smallest possible in the sense of the associated

sequence of dimension numbers. We first prove a technical lemma.

9.6. Lemma. Let X(s) be the matrix, defined by a partition

Ky 2 Ko 2 eee 2 Kp» ¥3 + ¢-e + x = mn, consisting of blocks
§i(s) where

®
L
o

s -1
X, (s) = R R, x (kg +1)
0o s 1
and
_)El(s) 0
X(s) = .., ’ n x (n+m)
0 X, (s)

Let B be an (m+n) x T matrix of rank 1. Then X(s)B has rank
greater than or equal to t- t for almost all s where t 1is the

largest number such that

kK + «x + .o +Km_t+1+t_<_'r.

Proof. We first consider the case that there is only one x, i.e.,
m = l. We can assume that B is in column echelon form by
postmultiplying by a nonsingular matrix if necessary. So B has
the following form:

0 e o 0 r1

I)\ 0 «o. O Al
1

X 0 o oo 0 r2

0 IX 0 12
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X x 0 ... 0

: .
o ® e O O Iku )u
X p T'u+1

The x's stand for possibly nonzero blocks.

0 -1 0
1 0
Write X(s) = s ., + © _ SAI . Az
0 1 0 D 0 1
1
and write B =] ¢ where b; is the i-th row.
bn+
sbl-—b2
Now X(s)B = sb: b I We need to prove that X(s)B has the regui1ed
n-1 n
sbn+bn+1

rank. Assume that B has rank T and T < n. Let x be a t vector and
assume that

X(s)Bx =0

We will show that either x = 0 or the equation only holds for
finitely many values of s. We first note that

L’_x = sbx
:
X = sn~121x
bn+1x = =3 blx

Thus if blx = 0 then bix = 0 for all x. But since B has full rank
this implies that x = 0, Thus we may assume that b;x = 1 and thus

that r; = 0. So we have that x; = 1, Xg = 8, eeey Xy =8 .

If rp, = 0,B is of the form (iT) and the result is obv{ous, S0 we

can assume r, #/ 0. Then we have
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Sbk X = b bd

so that

A A, -1

= 1
s = bll+1,l + bll+1,28 + ee + bk1+1,kls

and this equation is satisfied for only finitely many s.
Therefore we have shown that if there is a nonzero solution of
X{(s)Bx = 0 then b x # 0 and the solution can exist only for
finitely many values of s. Thus in this case the rank of X(s)B is
equal to T for almost all s. If B is invertible (rank of B equal
to n+l) then the rank of X(s)B is equal to n = rank X(s) =

(rank B) - 1.

Now let m be greater than or equal to two. Again put B into
column echelon form and partition B in such a way that the pieces

Bl’ e sy Bm are still in column echelon form.

B1 0 o Ky + 1
x B2 ces Kz + 1
X x cva By, Kﬁ + 3

The product X(s)B has the form

Xl(s)B1 0 oo
? Xz(s)B2 D...
.,
? Xm(s)Bm

It follows that the rank of X(s)B is equal to the sum of the
ranks of the Xi(s)Bi' From before we have that rank Xi(S)Bi =
rank Bi for all but finitely many s unless Bi is invertible in
which case Xi(S)Bi = rank B; - l. This proves the proposition. We
can now prove the theorem that relates the ordering o6n the

Schubert cells to the ordering on the orbits of the feedback
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group.

9.7. Theorem. Let (F,G) be a controllable pair and let Y be

1 n+m
the associated morphism from E (g) into gn(g ). Let Al .o An

be a sequence of subspaces of gn+m such that w(gl(g)) is
contained in the Schubert cell SC(Al,...,An). Let Kis eees Ko be
the Kronecker indices of (F,G) and for each i let p(i) = j 1iff

Kl + eee + Kj < i< Kl + eee + K Then

dim A, 2 1+ p(1) = 7 (x).

Proof. It is a simple matter to check that Ti(K) (cf. (9.2)

j+1°

above) is equal to i + p(i). We can assume that (F,G) is in

Brunovsky canonical form. Suppose that dim Ai =t < i+p(i).
Then Ai = {x € £n+m: <bj,x> =0, j=1, .., n+m-t} for certain

linearly independent bj. Let B be matrix whose columns are the
bi's. Let P(s) be space spanned by the rows of X(s). Since
w(fl(g)) is contained in SC(Al,...,An) we must have that
dim(Ai N P(s)) > 1. Thus the dimension of P(s)B is less than or

equal to n—i which is the same as
rank X(s)B £ n-i.

Now by the previous proposition rank X(s)B > n+m-t-% where £ is
the largest number such that

K <+ K + cee + K + 2 g n+m - t.

m m-1 m—-2+1

So we have the following

(1) t < i + p(i) (by hypothesis)
(2) n=1 > n+m -t - 2% or equivalently 1 Lt+2 -mn
(3) Km + ... + Kk + 24 {n+m-t

m-2+1
+ ® o o LN N 3 o
(4) Ky + Kp(i) < i< Ky * + Kp(i)+1
Using (2) and (3) we have
-+ ° e 0 bl = o e o -1
that Km + Km_2+l < n-i Kl+ <+ Km i so we have

1<k + eee 4+ Kp—g Which implies m = & > p(i) + 1 thus
P(ﬁ+‘i ¢ m-{-141 5{""4‘1)*(t*{"“}= t-1 which contradicts [ﬂ.
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This proves the theorem.

9.7. Vectorbundles and Schubert cells. Because every

posi;ive vectorbundle over gl(g) arises as ﬁhe bundle E(Z) of
some system

L one has the obvious analogues of theorems 9.5 and 9.6 for
positive bundles over gl(g). Here the morphism wz must, of
course, be replaced by the classifying morphism (cf. section 3.2
above) of a positive vector bundle E, and n + m and m are

determined respectively as dim F(E,gl(g)) and dim E.

10. DEFORMATIONS OF REPRESENTATIONS HOMOMORPHISMS
AND SUBREPRESENTATIONS.

10.1. On proving Inclusion Results for Representations.

Suppose we have given a continuous family of homomorphisms of

finite dimensional representations over C of a finite group G
(10.2) T+ M+ V

Suppose that Inm T, =P for t # 0 (and small) and that

Im "o = po. Then the representation po is a direct summand of
the representation p. This is seen as follows. Because the
category of finite dimensional complex representations of G is
semisimple there is a homomorphism of represéntations

¢o: Im wo + M such that ﬂo o ¢o = 1d. Then

ﬂt o ¢O: Im ¢o > Im LN is still injective for small t (by the
continuity of wt) which gives us po as a subrepresentation and
hence a direct summand of p.

It is almost equally easy to construct a surjective

homomorphism Im T Im ﬂo.

10.3. The Inverse Result. Inversely if Py is a

subrepresentation of p then there is a family of representations
(10.3) such that

Im 7, = p for t # 0 and Im T, = P,» and if p is generated (as a
g[G]~module) by one element one can take for M in (10.2) the
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regular representation. Indeed if Py is a subrepresentation of

p then p = ey ® Py Let w: M +» p = po & ° be a surjective map

of representations. Let ﬂo’“l be the two components of m. Let

s = (So’sl) be a section of . Then T8, = id, LI id,
T8 = 0, T8, = 0 and it follows that w(t) consisting of the
components “o and tnl is still surjective. Hence Im w(t) = p

and Im w{0) = Pye

11. A FAMILY OF REPRESENTATIONS OF Sn+m PARAMETRIZED
n+m
by G (C™" 7).

l1.1. Construction of the Family. Let M be the regular

representation of Sn+ . That is M has a basis e >0 € Sn

m
acts on M by the formula t(ed) = e

+nm
, for all T ¢ S

and Sn+
n+m

n+m "’
) and the n + m

m T0o
Now consider the universal bundle Em over gn(g

holomorphic sections € defined by

1 °°*2 ®a4nm

el(x) = e, mod x € gn+m/x, where e; is the i-th standard basis

vector. Take the (m+n)-fold temsor product of gm and define a
family of homomorphisms parametrized by gn(gn+m) by

®(n+m)

(11.2) 7 _: M > £_(x) e Eo(l)(x)“"'” ec(n)(x)

g

More precisely (11.2) defines a homomorphism of vectorbundles

n+m 8(n+m)
(11.3) G (™™ x M > g]

8 (n+m) by permuting the factors

The group Sn+m acts on Em(x)
and it is a routine exercise to see that “x is equivariant with
respect to this action, i.e. that NX(TV) = tnx(v) for all v € M,

T € Sn+m’ +m
the automorphism ¢ of 1l,...,n+m and then the automorphism 7).

(Here the product 10 € Sn is interpreted as first

Thus Im LI m(x) is a representation of Sn+m for all x

giving us a family of representations parametrized by gn(gn+m).
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Fixing a point x, € gn(gn+m) and choosing m independent sections

of Em in a neighbourhood U of x this gives us families of

o’
homomo = phisms of representations

Wz
(11.4 > Moo (¢MHPR) L eveg
such that In LV m(x) for x € U.
11 .5. Permutation Representations and Schubert-cells. (On

connec & Lon D). Let x € gn(gnﬂn) be a subspace of catm spanned by

the row s of a matrix of the form (n=3, n=5)

* * 0 0 0 0
0 * * 0 0 0 0
0 0 * * 0 0 0 0
0 0 0 0 * * 0 0
0 0 0 0 0 * * 0

where &= 11 the *'s are nonzero. Then obviously the representation
T(x) of S8* is isomorphic to p(Z) with &k = (4,3,1). Note that x
is in Tt he standard Schubert-cell SC(tT(x)), with x = (3,2,0).

This heo 1 ds in general and it is not difficult to extend this to

1> - 6. Proposition. Let x be an m-part partition of n,

~

K = (,<1+1,...,Km+1). Then for almost all x € SC(t(x)), the

represe nntation w(x) of Sn contains the representation p(;)

and for some x € SC(T(K))Tmﬂ(X) = p(K).

Com jecturally the reverse holds also. That is if for almost
all x i nn a standard Schubert—cell SC(X) we have that m(x)
containm s p(¥) then )‘i > Ti(K), i =1, 400, n. And I am even
incline d to believe that if x € SC(A) and 7 (x) contains (or is
equal £ o) p(x) then Ay 2 Ty().

No £ e also that the matrices (11.5) are precisely the type of

matrices (sI-A;B) for a system ¥ = (A,B}) in feedback canonical
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form (s # 0, ») suggesting that there is a natural representation

of Sh4m attached to I awaiting interpretation.

11.7. On a proof of the Snapper, Liebler-Vitale, Lam, Young

Theorem vice the Universal Family (11.2).

The structure of the family of representations (11.2) rather
quickly suggests a way of proving the Snapper etc. theorem by
deformation arguments as in 10.1. The argument is, however, more
complicated than one would like perhaps. It is perhaps best

illustrated by means of an example.

Consider an x € §3(gs) spanned by the rows of a matrix of

the form

1 -1 0 0 0
0 1 -1 0 0
z 0 0 -1 t

Let fl”"’ f5 be the images of the standard basis vectors

5 = = -
eys e++», €5 in C /x. Then f1 = f2 f3 # f4 zf1 + th so that
f, and f5 are a basis for gs/x for all values of z and t. Let

(1) e Sg be the identity permutation. The image of e(1y € M in
5 85 .
(c”/x) is by the definition (11.2) equal to

(11.8) f1 8 f2 @ f3 8 f4 ® f5 = zf11115 + tf11155

Where f11115 is short for f1 ® f1 ) f1 8 fl ® f5 and similarly
for other 5-tuples of indices. Symmetrizing the element (11.8)
with respect to the permutation (45) gives us

(11.9) + £ ) + 2tf

z2(f19115 11151 11155

Let V; be the subrepresentation of Im T generated by the
element (11.9). (The representation Im L. is the
subrepresentation of (gslx)GS generated by (11.8)). Now (11.9) is

invariant under the Young subgroup S3 x S,. Hence
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dim Vv, < 51/3121. On the other hand, if t 4 0 then setting z = Q
in (11.9) (which corresponds to the sur jective map mentioned just
above 10.2 associated to a family of representations) obviously
maps Vi onto the vector space with as basis all symbols f._.__
with three of the indices equal to 1 and 2 equal to 5. This is
p(3,2) of dimension 5!/312! so that Vl = p(3,2) if t # Q.Now for
z £ U set t = 0 in (11.8) to obtain a homomorphism of

representations
Im LI m(4,1)
It is now not hard to prove that (cf. [7] for a detailed proof).

I1.10. Proposition. The composed homomorphism of

representations
p(3,2) = VIC: Im T p(4,1) is surjective.
This then proves that p(4,1) is a direct summand of p(3,2).
The argument generalizes without difficulty for partitions
k > X such that A is obtained from « by a transformation of the

type described in 6.7 above.

This 1is by no means the easiest way to prove this theorem.
It is perfectly easy to describe the morphism p(x) +» p(X)
directly and then the general analogue of proposition 11.10
yields the Snapper, Liebler-Vitale, Lam, Young result. This proof
uses no representation theory at all (except the definition of

the permutation representations p(x); cf. [7] for details).

I1.11. Remarks. It is conceivable that the family (11.2)
contains all the families of representations one needs to prove
the Snapper etc. result by means of deformation argument. Quite
generally we would like to pose the question which
representations occur in this family and investigate universal
families (for continuous families) of homomorphisms of

representations from some fixed representation space into
another.
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